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Regulatory mechanisms in the Hh pathway
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Stem cells

What is a stem cell? \)
replicate itself, or...

A single cell that can J

J

= (&N

T AN differentiate info many
% Mz cell types. i

AN CEY @

(* )
Image prepored by Catherine Tvomey for the National Academies, -
l/nn%rs/unmng Stem Cells: An Overview of the Science and Issues

from the National Academies, hitp: //wvw. nafionolacaderes.org /stemcell.
Academic noncommercil use is pimited

r/// 0]
Stem cells

Stem cells play a fundamental role in:
+ Development

- Tissue regeneration

- Degenerative disorders

- Stem cells, directed to differentiate into specific cell types,
offer the possibility of a renewable source of replacement
cells and tissues to treat diseases including
macular degeneration, spinal cord injury, stroke, burns,
heart disease, diabetes, osteoarthritis, and rheumatoid
arthritis.

« Furthermore, defects in stem cell biology may lead to
developmental alterations and cancer.




Neural stem cells
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Spatial and temporal control of cell fate are triggered by morphogens

v" Morphogens: molecules/signalling determining:
v’ pattern of tissue development in

morphogenesis
v’ positions of the various specialized cell

types within a tissue

Roof plate
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early development. |
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organs of the body.
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Developmental morphogens: BMPs, Wnts, FGFs and
Hedgehoq,




PATHWAYS most involved in Stemness signals:

i Transit o |
Stemcell  :amplifying Dividing  Neuroblasts ~ Mature neurons
1 cells neuroblasts :

Hh is one of the master developmental pathways which plays and
essential role in the stem cell compartment.

To fully understand this role we are investigating the signaling
pathway, its targets and regulatory mechanisms, in neural cerebellar
stem cells.

Hedgehog and neural stem cells

- Hh signaling controls embryonic and postnatal NSC of forebrain
subventricular zone and of the hippocampus (Ahn & Joyner, 2005; Lai et al, 2003;
Machold et al, 2003; Palma et al, 2005, Palma & Ruiz i Altaba, 2004).

+ In cerebellum, Hh is critically required to keep transit-amplifying granule cell
progenitors (GCPs) undifferentiated, to promote their proliferation (Dahmane &
Ruiz i Altaba, 1999; Wallace, 1999, Wechsler-Reya & Scott, 1999)

- Hh-driven Gli transcription factors, act on target genes promoting cell
proliferation and reducing cell differentiation.

« The identity of Hh/Gli target genes involved in the control of stemness in
NSCs and cancer SCs is poorly understood
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Isolation of neural stem cells from the postnatal cerebellum
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Abstract

The cerebellum is critical for motor coordination and cognitive function and is the target of
transformation in medulloblastoma, the most common malignant brain tumor in children. Although
the development of granule cells, the most abundant neurons in the cerebellum, has been studied in
detail, the origins of other cerebellar neurons and glia remain poorly understood. Here we show that
the murine postnatal cerebellum contains multipotent neural stem cells (NSCs). These cells can be
prospectively isolated based on their expression of the NSC marker prominin-1 (CD133) and their
lack of markers of neuronal and glial lineages (lin"). Purified prominin™lin™ cells form self-renewing
neurospheres and can differentiate into astrocytes, oligodendrocytes and neurons in vitro. Moreover,
they can generate each of these lineages after transplantation into the cerebellum. Identification of
cerebellar stem cells has important implications for the understanding of cerebellar development and
the origins of medulloblastoma.
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NSC
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Differentiation markers
Stemness markers and Hedgehog Molecules
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Transcriptome Profiles of :

1.NSC..

To obtain a complete transcription pattern of cerebellar NSC
2. ... and differentiated NSC

To identify transcripts differentially expressed during differentiation
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RNA Next Generation Sequencing (RNA-Seq) technology

A massive parallel deep-sequencing —

RNA-Seq is able to interrogate the genome-wide global transcriptome and identify
new transcripts,
alternative spliced isoforms
non-coding RNAs. -
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High throughput analysis of RNA expression profiles by using lllumina technology:
70 bp paired-end sequencing each run.
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Procedures
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mRNA-seq J b miRNA-seq
i and ali i and ali
with Genomatix Mining with TopHat and Mapping and alignment with
Station (GMS) Cufflinks Genomatix Mining Station (GMS)
Method 1: Method 2: Method 3: Method 4:
DESeq Alg edgeR Alg || cuffdiff Alg || cuffiff Alg DESeq Algorithm:
D t Di i D t trimmed Differential expression analysis
expression expression expression reads with log2 fold change>1 and adj. p-
analysis analysis with || analysis with| | trimmed to 1ue<0.05 betw h -
with log2 log2 fold default 55mers - value o etween eac_ pair
fold change>1 parameters- same (NcSC,Diff-NcSC) of replicates
change>1 and adj. p- ucsc parameters
and adj. p- value<0.05 annotation with CuffDiff
value<0.05 FPKM>0.3 - -
1 7 Selection of common miRNAs found
l in the 3 pairs of replicates
Selection of common genes between all
methods
Enriched Pathways of common genes, >
using DAVID (KEGG, Biocarta, Panther) From the "S,‘R°J:P'f°9"'a‘5d
mi s:
Selection of genes that are implicated in search of miRNAs that have binding
the Hedgehog Pathway sites of the filtered genes 17
in their promoter region

- Quality of sequencing and normalization validated: no
biases

« In each sample there are about 170’000 expressed
transcripts (80% annotated)

- ldentified about 14000-15000 expressed genes (86%
annotated)

- Data analyzed by 4 different approaches: transcripts
emerging as differential in all 4 systems are selected (926
transcripts)
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Hedgehog pathway
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FOXm1 is expressed in NSC but not in differentiating neural cells
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Biological role of Foxm1 in NSCs

Neurosphere formation assay
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Binding sites on FOXM1 regulatory regions

Gli Binding Sites
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Correlation between hedgehog and stem cell markers expression in
cerebellar stem cells
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Correlation between Gli and Nanog expression
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Nanog is required for NSC self-renewal induced by
Hh
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Analysis of Gli1 responding elements in Nanog promoter
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microRNAs

. Short non-coding RNA sequences encoded in either introns or exons DNA

. Have post-transcriptional regulatory functions (i.e., differentiation,
metabolic homeostasis, apoptosis, and proliferation)

. Have a complementary target mRNA transcript to which they bind causing
negative regulation

« Mode of action: either degrade mRNA transcript or prevent translation

« Hundreds of miRNAs in humans, each with many target sites
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MicroRNA: negative regulation of gene expression

A, microRNA * MicroRNAs imperfectly pair to in

Cap An
* Gene Expression inhibition degree
depends on the numbers of
microRNA binding sites.
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hightroughput techniques - method:

A massive parallel deep-sequencing
v" miR expression analysis
v Deregulated miRNAs
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v’ Putative new pre
v moRNA (miRNA-offset RNAs- genomic
region flanking mature miRNA)
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microRNAs putatively regulated by Foxm1

miRNA log fc adj. P-value Part of miRNA Cluster
miR-184-5p 7,00 0,013652227 -
miR-158-3p 4,00 0 15-16
miR-130A-5p 3,70 5.17E-15 -
miR-02A-1-5p 335 0 17-92
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[19a [25
miR-1308-5p 288 0 - 20a
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miR-301A-5p 2,82 8,37E-121 - loza-1
miR-158-5p 271 0 15-16
miR-1308-3p 2557 0 -
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miR-92A-3p 238 0 17-92
miR-1068-5p 217 0 106b-25




validation in gpcr
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Conclusions

Neural Stem Cell Pro-stemness
(niche) microRNAs

Role of Foxm1 in
self renewal
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